Neural-network approach to ground-based passive microwave estimation of precipitation intensity and extinction

نویسندگان

  • Frank S. Marzano
  • Ermanno Fionda
  • Piero Ciotti
چکیده

A physically-based passive microwave technique is proposed to estimate precipitation intensity and extinction from ground. Multi-frequency radiometric measurements are inverted to retrieve surface rain rate, columnar precipitation contents and rainfall microwave extinction. A new inversion methodology, based on an artificial neural-network feed-forward algorithm, is evaluated and compared against a previously developed regression technique. Both retrieval techniques are trained by numerical simulations of a radiative transfer model applied to microphysically-consistent precipitating cloud structures. Cloud microphysics is characterized by using parameterized hydrometeor drop size distribution, spherical particle shape and dielectric composition. The radiative transfer equation is solved for plane-parallel seven-layer structures, including liquid, melted, and ice spherical hydrometeors. The proposed neural-network inversion technique is tested and compared with the regression algorithm on synthetic data in order to understand their potential and to select the best frequency set for rainfall rate, columnar contents and extinction estimation. Available ground-based radiometric measurements at 13.0, 23.8, and 31.6 GHz are used for experimentally testing and comparing the neural-network retrieval algorithm. Comparison with rain gauge data and rain extinction measurements, derived from three satellite beacon channels at 18.7, 39.6, and 49.5 GHz acquired at Pomezia (Rome, Italy), are performed and discussed for a selected case of lightto-moderate rainfall. a 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies

The purpose of this study is to describe a new algorithm based on a neural network approach (Passive microwave Neural network Precipitation Retrieval – PNPR) for precipitation rate estimation from AMSU/MHS observations, and to provide examples of its performance for specific case studies over the European/Mediterranean area. The algorithm optimally exploits the different characteristics of Adva...

متن کامل

A Verification Study over Europe of Amsu-a/mhs and Ssmis Passive Microwave Precipitation Retrievals

Global monitoring of the precipitation requires the full exploitation of all overpasses of present and future satellites carrying cross-track and conically scanning passive microwave (PMW) radiometers. Therefore, it is essential to achieve consistency and accuracy of passive microwave precipitation retrievals from the different sensors orbiting around the globe. Within the EUMETSAT H-SAF progra...

متن کامل

Neural Network Microwave Precipitation Retrievals and Modeling Results

We describe a simulation methodology used to develop and validate precipitation retrieval algorithms for current and future passive microwave sounders with emphasis on the NPOESS (National Polar-orbiting Operational Environmental Satellite System) sensors. Precipitation algorithms are currently being developed for ATMS, MIS, and NAST-M. ATMS, like AMSU, will have channels near the oxygen bands ...

متن کامل

Neural network microwave precipitation retrievals and modeling results Citation

We describe a simulation methodology used to develop and validate precipitation retrieval algorithms for current and future passive microwave sounders with emphasis on the NPOESS (National Polar-orbiting Operational Environmental Satellite System) sensors. Precipitation algorithms are currently being developed for ATMS, MIS, and NAST-M. ATMS, like AMSU, will have channels near the oxygen bands ...

متن کامل

Precipitation Estimation from Radar and Radiometric Observations from Trmm Data Using Artificial Neural Networks

Artificial Neural Network (ANN) technique has been used for the estimation of precipitation, mainly from passive and active microwave measurements from space. ANN has been used to estimate precipitation using TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measuring Mission (TRMM) satellite. A precipitation algorithm designed to generate rainfall estimates using a combination of TMI and T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006